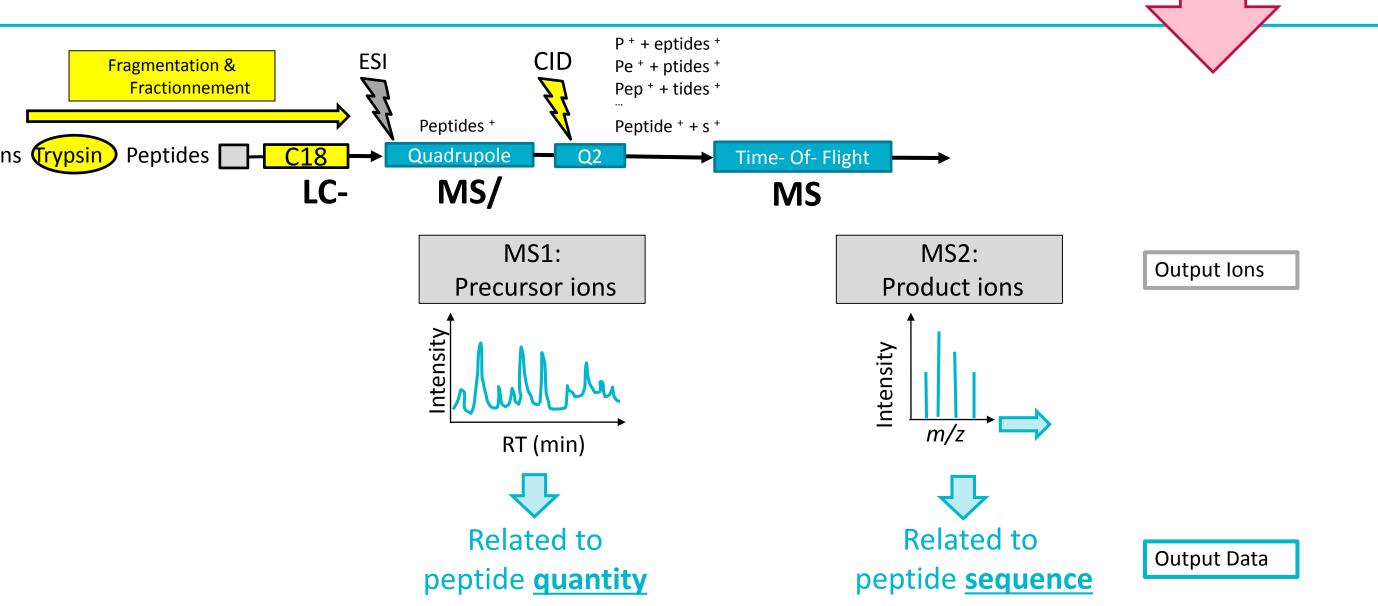


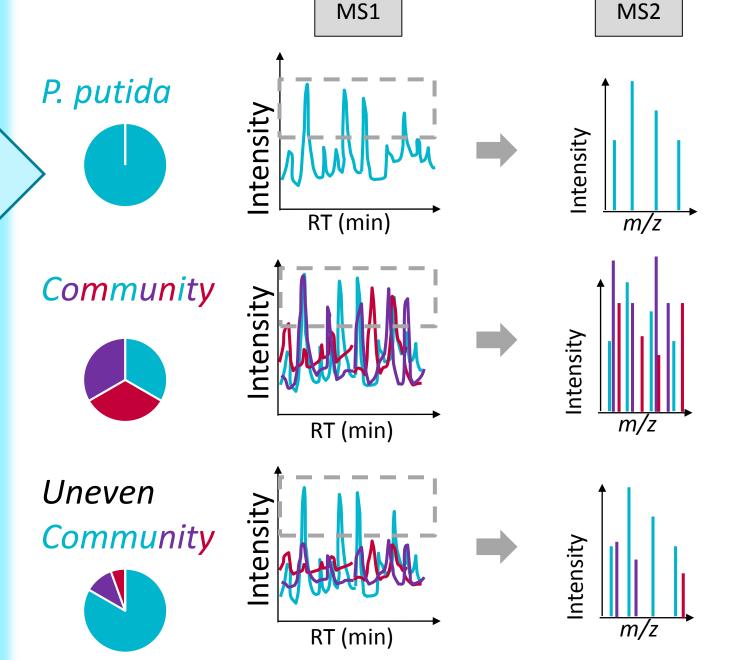
Fishing up rare bacterial proteomes using SWATH-MS in synthetic microbial communities

Mélanie BERAUD, Giuseppe GIAMBARRESI, David GILLAN and Ruddy WATTIEZ


Service de Protéomique et Microbiologie, Université de Mons, Avenue du Champ de Mars, 6, 7000 Mons, Belgium

Control Community + Zn 0.5 mM

Fig. 1 | Communities were grown at 16 °C, 90 rpm in marine medium.


We created a **synthetic community** composed of **9 bacteria** in order to analyse the effect of metals. This community was cultivated in marine conditions and stressed for 28 days using zinc 0.5 mM (**Fig. 1**).

Metaproteomic (LC-MS/MS) pipeline using TripleTOF™ 5600 (AB Sciex, ESI ionization source).

DDA-MS

The community composition was studied using **Q-PCR** (targeting 16S DNA of each bacteria). In parallel, **metaproteomics** was used in order to detect proteins involved in metal stress resistance.

The most abundant Precursor Ions were selected for MS2 (Fig. 2). Subsequently only a subset of proteins were identified and quantified. This approach is called "Data- Dependent Acquisition"-MS (DDA-MS).

If a bacterium dominates in the community, mostly peptides from this bacterium are identified. No conclusions can be drawn for the other species.

Fig. 2 DDA-MS selects the most abundant peptides.

As an example, within the Marine synthetic community, mainly *P. putida* proteins were identified (Fig. 3).

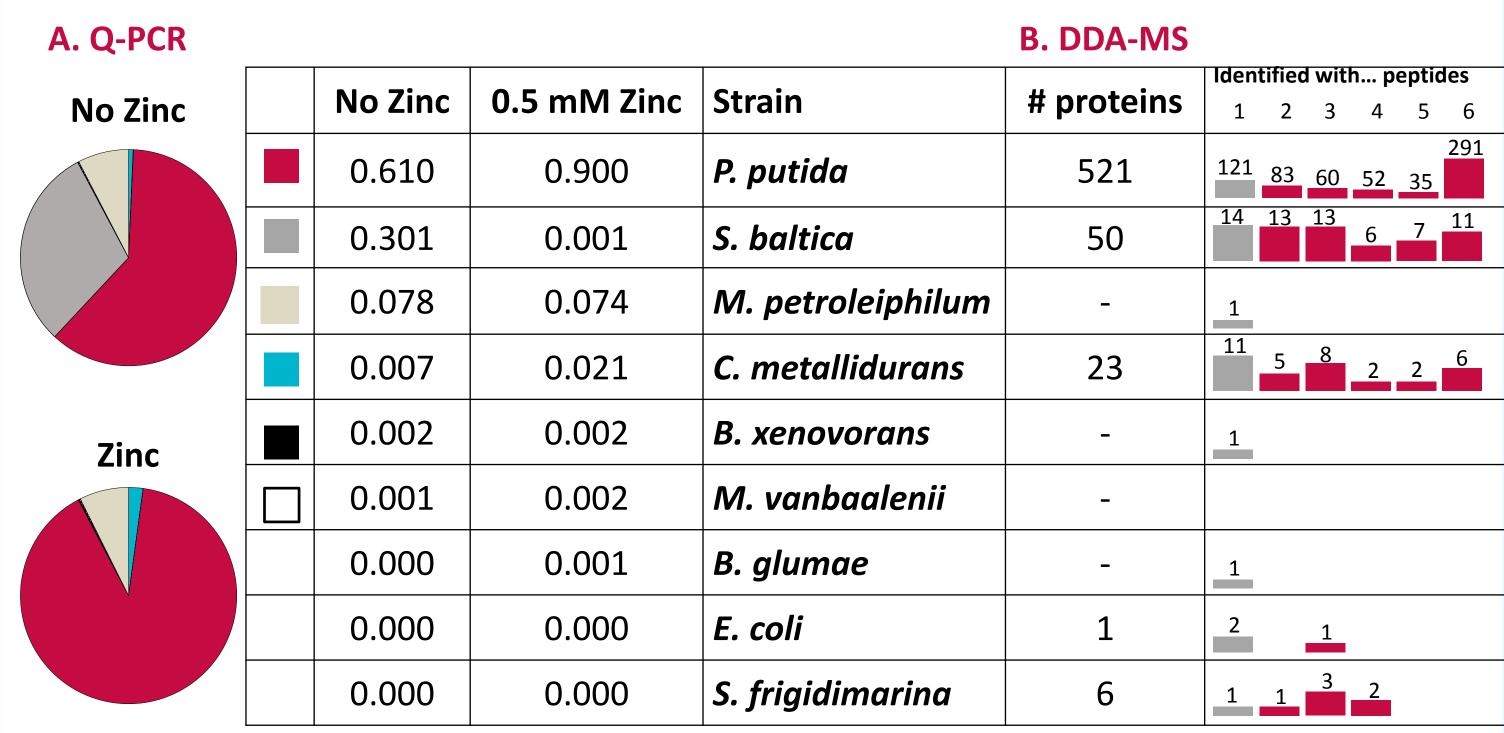


Fig. 3 | Q-PCR and metaproteomics of the synthetic community: (A) Ratio of cells based on 16S DNA Q-PCR and (B) Number of proteins identified using DDA-MS according to species. « # proteins » indicates the total number of relevant proteins (i.e. with more than 1 peptide).

SWATH-MS

To increase the number of Precursor Ions, MS1 Spectra were decomposed in **Sequential Windows** (Fig. 4A), each of these being fully used for MS2. The resulting MS2 spectra are then composed of **every peptides whatever their abundance**. This approach is called "Data-Independent Acquisition" (DIA) using **SWATH** (Sequential Windows Acquisition of all THeoretical fragment ion; Gillet *et al.*, 2012).

A reference spectral library composed of known peptides is then used as a map of the different Precursor Ions that can theoretically be obtained with the species of the community. This library is prepared using DDA-MS analyses of **each bacterial species** individually cultivated in the same conditions (Fig. 4B).

SWATH-MS first acquisition the Community process in 32 Sequential overlapping Windows of 25 Da (A) and compares the resulting spectra to a spectral library composed **Spectral Library** (using DDA- MS of the of known peptides for identification (B). **Marine Synthetic community** Protein amount for each experiments. Spectral Library the Most proteins are found in both analyses (in black). 601 proteins 559 proteins DDA-MS DIA-MS (SWATH-MS)

When comparing the 2 conditions(+/- zinc), a subsequent part of the proteins (i.e. 117 proteins) that were not significantly found upregulated or downregulated by metal during DDA-MS analysis became significantly upregulated or downregulated (Fig. 5).

16 64 72

As quantification is based on the Fragment ions (MS2 step), the SWATH-MS approach generally increases the accuracy of the quantification for all peptides including low abundance peptides.

SWATH-MS specifically increased the number of proteins identified for rare species. 40 proteins of *C. metallidurans* were identified in total *i.e.* twice more than for DDA analysis.

UNIPROT	# pep	Group	Log2Ratio(NoZ/Z)	pval	EggNOGG
Q1LLB2	5	Phosphate-binding protein PstS	-1.94	0.001	Inorganic ion transport and metabolism
Q1LJ09	2	Phosphite transport system-binding protein ptxB	-1.75	0.004	Inorganic ion transport and metabolism
Q1LRE1	3	Glu and asp transporter, PBP (ABC superfamily)	-1.88	0.001	Amino acid transport and metabolism
Q1LKG9	3	Leu/ileu/val transporter subunit, PBP (ABC superfamily)	-1.68	0.003	Amino acid transport and metabolism
Q1LP29	3	Putative ABC transporter, periplasmic substrate-binding protein	-1.07	0.007	Function unknown
Q1LR19	4	Extra-cytoplasmic Solute Receptor protein (Bug, PBP)	-2.06	0.001	Function unknown
Q1LKG0	3	Malate dehydrogenase	-2.65	0.001	Energy production and conversion
Q1LIV8	3	Fused malic enzyme oxidoreductase phosphotransacetylase	-0.78	0.015	Energy production and conversion
Q1LH35	6	Acetyl-CoA acetyltransferase	-1.78	0.000	
Q1LKM2	3	Acyl carrier protein	-2.43	0.000	Lipid transport and metabolism
Q1LLG3	2	Thioredoxin	-1.24	0.005	Post-translational modification, protein turnover, and chaperones
Q1LLZ7	3	Alkyl hydroperoxide reductase, peroxiredoxin (Thioredoxin-dependent p	-2.29	0.001	Post-translational modification, protein turnover, and chaperones
Q1LQS5	3	10 kDa chaperonin	-2.42	0.002	Post-translational modification, protein turnover, and chaperones
Q1LAZ9	2	Cold-shock DNA-binding protein family	-0.97	0.018	
Q1LRG2	2	AspartatetRNA(Asp/Asn) ligase	-1.52	0.005	Translation, ribosomal structure and biogenesis
Q1LJ99	2	30S ribosomal protein S20	3.83	0.029	Translation, ribosomal structure and biogenesis
Q1LI52	2	50S ribosomal protein L6	-2.52	0.001	Translation, ribosomal structure and biogenesis
Q1LI55	2	50S ribosomal protein L30	-1.09	0.029	Translation, ribosomal structure and biogenesis

Fig. 6 Protein found differentially expressed with Zn 0.5 mM. UNIPROT code, # of peptides used for identification (« # pep »), Log 2 Ratios NoZ/Z, pvalue of Student t-test and EggNOG first level of annotation are given.

Most of the *Cupriavidus* proteins more abundant in the presence of Zn were involved either in various sensing and transport systems (6 out of 18) or in stress response (Fig. 6).

SWATH-MS is a major breakthrough in the field of functional microbiology. It increases the quantity of proteins detected for rare bacteria as well as the overall accuracy of the quantification. Thanks to this approach, we were able to analyse the influence of metals on *C. metallidurans* in a synthetic community composed of 9 strains. We are currently increasing the Spectral Library to expand the identification of the other rare species in the community.

- SWATH-MS increases the accuracy of quantification.
- SWATH-MS specifically increases the number of proteins identified for rare species.

Less abundant in Zinc

Not significantly changed

More abundant in Zinc